

Advantages of Advance Design for Steel Users

Table of Contents

1.	Advance Design advantages for Steel users	3
2.	Support for International codes	3
3.	Fast and Easy Modelling	3
4.	Climatic Loads Generator	4
5.	Advanced stability analysis - 2 nd order analysis with 7 degrees of freedom	5
6.	Seismic generator	6
7.	Detailed results and design calculation Reports	6
8.	Shape Optimization	7
9.	Advanced FEM modelling	8
10.	Advanced FEM analyses	9
11.	Steel connections (Eurocode)	9
12.	Design of cold-formed members (Eurocode)	11
13.	Maintenance and support	12

GRAITEC

1. Advance Design advantages for Steel users

In terms of Modelling, analysing and optimizing the steel structures, Advance Design is a high-end solution that integrates all these processes within the same modern and easy-touse interface. It meets the highest standards of the industry aiming to increase users' productivity and smoother workflow.

The best-in-class BIM interoperability and synchronization with Autodesk Advance Steel is also another aspect of the solution. Steel designers and detailers can easily export/import or synchronize their Advance Steel models with Advance Design which will help them to apply loads and code check or optimize the steel sections even at the preliminary stages of the project before engineers get involved.

The other benefit here is, the structural models form Advance Design can be synchronized back to Advance Steel, so detailers will have all the possible changes and modification due to structural design, automatically applied to their model using Graitec BIM connect tool.

Below we are discussing some of the main benefits of Advance Design for steel users:

2. Support for International codes

Advance Design integrates the latest Eurocode publications with several national appendixes and North American codes:

ANSI/AISC 360 (ASD & LRFD) USA CAN/CSA S16 Canada CM66 France EC3 - With national Appendix for France, Great Britain, Romania, Germany, Poland, Slovakia and Czech Republic. NTC2018 Italy

3. Fast and Easy Modelling

A complete set of modelling tools and CAD functions are available to easily model complex 3D steel structures directly in Advance Design. In addition, it is possible to automatically create trusses, portal frames and vaults which are available using the corresponding structure generator.

Moreover, the data grid function allows the user to customize the geometry of model elements, supports and loads, in a quick and easy way.

4. Climatic Loads Generator

Modelling and defining the values of all climatic loads is a time-consuming process and a source of possible errors. Using the 3d wind and snow generator in Advance design can increase your productivity by reducing the time spent calculating the loads and provide more accurate results. Advance Design also includes a crane load generator for moving loads. This new generator uses special load cases with successive vehicle positions to automatically generate loads from bridge or mono cranes.

The climatic loads generator supports various geometry types:

Drifted snow distribution on a vaulted roof (greenhouse)

5. Advanced stability analysis - 2nd order analysis with 7 degrees of freedom

Possible for Sections:

- bisymmetric
- monosymmetric
- asymmetric
- variables
- thin-walled

Especially useful for profiles:

- prone to warping
- prone to torsion
- difficult to determine the critical moment

6. Seismic generator

Save computation time by using the RITZ solver for modal, seismic and time history analysis.

7. Detailed results and design calculation Reports

Internal forces and design results can be displayed directly on the structure in the 3D view with a wide range of options to customize how they are presented.

Advance design also offers detailed results and calculation reports. The shape sheet allows you to quickly view all the available results for a selected steel element: cross section properties, deflections, strength, stability, fire resistance and cross section class, etc. in one dialog box. You can also generate a detailed report with article references, formulas and intermediate values. The user may customize the design reports, while the saved views are

updated automatically. These features save hours of time when it comes to generating technical documentation.

Shape Sheet - Linear	Element No.3	34		×		Shape sheet - Linear element No. 4 Wet				
Cross section Deflections	(16.050%) Cross	Sections Strength (16.6734) Class	Work		1) Cross section					
	case	Verification	ratio		Chane	W250x22				
					Dimensions(cm)	h = 25.40 h = 10.20 hr = 0.58 H = 0.60 r = 2.20 r1 = 0.00				
Compression	n°205	Cf S Cr (13.3.2) 71.019 < 610.182 kN	11.639%		Cross sections(cm2)	Area = 28.50 Sv = 15.60 Sz = 33.00				
					loortio(om4)	It = 4.34 ly = 2800 lz = 133				
Shear	n*204	Vf≤Vr (13.4)	0.172%		Inertia(cm4)	ht = 4.34 fy = 2000 fz = 123				
y direction		0.545 < 315.997 kN			Moduloc(om2)	Welv = 262 Welz = 29.1				
Shear		Vf≤Vr (13.4)			Modules(cm3)	VVpiy = 203 VVpiz = 30.1				
z direction	n-207	0.798 < 315.997 kN	0.253%		Grade	640.21W-350W E = 200000 MPa Nu = 0.3 G = 70925.1 MPa				
Bending y	n*205	Mf≤Mr (13.5) 0.955 < 40.426 kN*m	2.363%		2) Section classificat	tion				
Bending z	n*205	Mf≤Mr (13.5) 1.312 < 40.426 kN*m	3.245%		Class	Lower wing : Class COMPACT Center : Class COMPACT Upper wing : Class COMPACT				
Combined forces	n*205	Cf/Cr + (U1x ⁴ Mfx)/Mrx + (U1y ⁴ Mfy)/Mry ≤ 1 (13.8.3) 0.169 < 1.000	16.873%		3) Deflections	$\label{eq:G40_21M-350W} E = 38. WpE = 38. The arrow of the second seco$				
	11				1st criterion	Element deflections: z : Case no 102 : 1.2x(1 D]+1.6x(2 L], Mesh No. 4.3 4/4 L/160 > L/360 (225 %)				
					4) Cross sections str	rength				
1		Edit report	Edit detailed report	ОК	Tension Compression (Chapter D)	Case no 105 : 1x[1 D]+0.75x[2 L], Mesh No. 4.1 P _u = Φ ₁ • P _m (D2-1, LRFD) : 0.00 < 897.52 kN (0 %) Tension : = 9.92 173				
						P _a = 997.24 kN				
					Shear in y direction (Chapter G)	Case no 102 : $1.2x(1 \text{ D})+1.6x(2 \text{ L})$. Mesh No. 4.1 $V_{\mu} = \Phi_{\mu} \cdot V_{\mu}$ (G6-1, LRFD) : 40.00 < 265.97 kN (15 %) $\Phi = 0.90 \cdot C_{\nu} = 1.00 \text{ A}$.				
					Shear in z direction (Chapter G)	Case no 102 : 1.2x[1 D]+1.6x[2 L], Mesh No. 4.1 V _u = 0 _v + V _n (G2-1, LRFD) : 55.00 < 309.29 kN (18 %) 0 _v = 1.00 (G2-1, LRFD) : 55.00 < 309.29 kN (18 %)				
					Bending /yy (Chapter F)	Case no 102 : 124(10)+164(2 L), Mesh No. 4.3 M = 404 + M, (F2, LRFD) : 68,75 > 22.10 kt/m (311 %) Lg = 0.87 m Lg = 0.00 m (5, 0.11 kt/m (311 %) Lg = 0.87 m (2, 2, 2, 2) M = 24.55 kt/m M = 24.35 kt/m				
					Bending /zz (Chapter F)	Case no 102 : 1.2x[1] D+1.6x[2 L], Mesh No. 4.3 M _a = Φ _a + M _a (Fe, LFFD) : 50.00 > 12.00 kN'm (417 %) L _p = 0.00 m L _p = 0.00 m L _p = 0.00 m F _u = 0.00 MPa M _a = 13.33 kN'm				
					Torsion (Chapter H)	not done (-)				
					Composed Forces (Chapter H)	not done (-)				
					5) Elements stability	·				
Ţ.					Buckling on Y-Y	Lfz = 19.99 m λ _y = 198.498				
					Buckling on Z-Z	Lfy = 19.99 m λ_z = 962.173				
					Lateral-torsional buckling	Lbi = 5.00 m Lbs = 5.00 m $\lambda_{\rm LT}$ = 49.653				

8. Shape Optimization

Advance Design compares the work ratio of the steel elements and suggests (if necessary) more adequate cross sections, that would correspond to the defined conditions. The user has full control on the optimization conditions, the suggestion process and the list of available shapes.

Verification	Optimisation						
Optimisation Sort profiles Buckling Angle verification Calculation Sequence	Optimisation mode C by design template C per system C by sections C by name						
	- Optimisation ordena	100 50 100	2 2 2				
	Search range Automatically determined Automatically determined with a maximum limit	8					
	Search range	8					

With the suggested shapes dialog box, it is simple and easy to visualize what changes need to be made and select the best solution for a member or groups of members. The changes can also be applied automatically with the chained optimization process.

	Element	Cross sections	Strength/stability work ratio	Deflection work ratio	Suggested solutions	Strength/stability work ratio	Deflection work ratio	Accepted solutions	
	479	CHS114.3x6.3C	6 %	47 %					1
	480	CHS114.3x6.3C	2 %	76 %					1
t	481	CHS114.3x6.3C	34 %	52 %					1
	482	CHS114.3x6.3C	1 %	76 %					1
T	483	CHS114.3x6.3C	19 %	52 %			[]		1
1	484	CHS114.3x6.3C	13 %	77 %					1
Optimisation method	485	CHS114.3x6.3C	2 %	52 %					1
	486	CHS114.3x6.3C	8 %	77 %					1
element	487	CHS114.3x6.3C	2 %	52 %					1
section	488	CHS114.3x6.3C	293 %	45 %	CHS273x12C	99 %	2 %	CHS273x12C	1
design template	489	CHS114.3x6.3C	413 %	48 %	CHS323.9x10C	93 %	1 %	CHS323.9x10C	1
name	490	CHS114.3x6.3C	243 %	48 %	CHS273x10C	95 %	2 %	CHS273x10C	1
austam	491	CHS88.9x8C	591 %	98 %	CHS273x14C	97 %	2 %		1
system	492	CHS88.9x8C	368 %	183 %	CHS244.5x12C	97 %	5 %		1
	493	CHS88.9x8C	361 %	82 %	CHS244.5x12C	95 %	2 %		1
Accept all	494	CHS88.9x8C	196 %	146 %	CHS219.1x10C	84 %	7 %		1
Reject all	495	CHS88.9x8C	447 %	74 %	CHS273x10C	94 %	2 %		1
	400	00000 0000	114 0/	101 0/	CUC177 00100	00.0/	15 0/		

9. Advanced FEM modelling

Advance Design provides users with:

• Many linear element types (bars, beams, variable elements, tie, strut, cable, rigid)

DOF

DOF

Restraint Constraint Link

Elastic

- Advanced links
- Total / Elastic / Plastic hinges
- Clipping of forces
- Super-elements
- powerful meshing engine

10. Advanced FEM analyses

- Linear
- Nonlinear
- Buckling 🏹
- Seismic 🧯
- Pushover
- 2nd order calculation (nonlinear analysis with large deformation)

11.Steel connections (Eurocode)

 $\overline{\Omega}$

The user has the possibility to model connections in Advance Design and then doing design calculations using Steel Connection module

12.Design of cold-formed members (Eurocode)

Users can design cold-formed members, as per EN1993-1-3.

Cold-formed steel profiles

ary manager									
T- Fumpean Profiles			C 40	F 85			0	v	1
E-Graitec Profiles		H	5.90	5.00		_	0	N	_
E-Non-Compound Profiles		Т	Г	_			Can	icel	
A G Brown - Anchor Angle						_			7
- A G Brown - Plates						_	He	dp.	
- A G Brown - Plates (for outdated joints)		14	-			Tv	e of lami	ination	
- A G Brown Accessories - Angle		14							_
- A G Brown Accessories - Sag Bars & Tie						Co	Id-Forme	d Roller	•
- A G Brown Angles (Purlin / Rail)		1					Symmetry	ric.	
- A G Brown C-Section			-n.2	26		-	- Synance		
A G Brown C-Section Sleeves									
- A G Brown Eaves Beam									_
- A G Brown Zed		Designation	Area	ly	lz	lyz	lt	Welyinf	Ľ
- A G Brown Zed Sleeves			(cm²)	(cm4)	(cm4)	(cm4)	(cm4)	(cm3)	
-AISC A1085 HSS Pipe	L	AGB Z14014	3.98	123.71	31.00	46.28	0.04	17.49	
AISC A1085 HSS rectangular		AGB Z14015	4.26	132.15	33.02	49.36	0.05	18.68	1
AISC A1085 HSS square		AGB Z14016	4.54	140.53	35.02	52.41	0.06	19.87	1
AISC Angle identical		AGB Z14018	5.09	157.14	38.93	58.41	0.09	22.22	1
AISC Angle not identical		AGB Z14020	5.64	173.55	42.75	64.31	0.12	24.54	Ļ
AISC C Channels		AGB Z17015	4.71	207.63	33.03	60.59	0.05	24.21	Ļ
AISC HP		AGB Z17016	5.02	220.88	35.02	64.34	0.06	25.76	4
AISC HSS Pipe		AGB Z17018	5.63	247.14	38.94	71.73	0.09	28.82	Ļ
AISC HSS rectangular		AGB Z17020	6.24	273.12	42.76	78.98	0.12	31.85	Ļ
AISC HSS square		AGB Z17025	7.75	336.78	51.88	96.51	0.24	39.27	Ļ
- AISC M		AGB Z20016	5.82	355.30	53.36	100.42	0.07	35.27	1
AISC MC Channels		AGB Z20018	6.53	397.84	59.42	112.09	0.10	39.49	1
AISC MT		AGB Z20020	7.24	439.97	65.34	123.56	0.14	43.68	1
AISC Pipe		AGB Z20025	9.00	543.54	79.59	151.42	0.27	53.96	4
AISC S		AGB 224018	7.36	627.38	67.84	147.27	0.11	51.29	1
		AGB Z24020	8.16	694.18	74.63	162.41	0.15	56.75	1
AISC ST					04 00	100 77	0.00	70 10	- 10 C
AISC ST AISC W		AGB Z24025	10.15	050.09	91.00	199.22	0.20	70.19	÷

13. Maintenance and support

User may choose perpetual licenses or DTS, and benefits from a well-known technical support. With two updates per year, Advance design will remain up to date.

GRAITEC provides their clients with guarantees related to solid and international editor.